Mathematische Naturwissenschaft vor Galilei
Wie ich in den vorhergehenden Beiträgen gezeigt habe, hat sich die europäische Kultur vom Mittelalter bis zur Renaissance „mathematisiert“.
Die Rechenkunst mit den arabischen Ziffern stellte einen gewaltigen Fortschritt dar. Rechenschulen und neuartige Rechenbücher, sowie die Übersetzung und Auflage antiker geometrischer Schriften sorgten für eine noch nie dagewesene Verbreitung mathematischen Wissens. Die Renaissance-Kunst ist voller Mathematik. Damalige Künstler legten ihren Zeichnungen Liniennetze zugrunde, beschäftigten sich mit komplexen geometrischen Körpern, analysierten die Dinge nach ihren Proportionen. Ferner wurde mathematisches Wissen, wie nie zuvor in der Geschichte, für praktisch-technische Anwendungen nutzbar gemacht: in der Kartografie, dem Bauwesen, der Konstruktion von Werkzeugen und Maschinen. So entstand eine neue mathematische Sichtweise auf die Dinge.
Hier noch einmal ein Zitat von Josef Honerkamp über Galilei[10]:
„Erst Galilei revoltierte gegen [die Übermacht der aristotelischen Philosophie] und zeigte als Erster, zu welchen Einsichten der Gebrauch der Mathematik bei der Beobachtung der Natur führen kann.
Ja, vielleicht hat Honerkamp recht und Galilei war der erste, der auf die Idee kam, die Methoden der Mathematik für die Naturerkenntnis nutzbar zu machen. Möglicherweise hat zwar die Mathematik und Geometrie das Leben und die Arbeit vieler Menschen in der Renaissance verändert, Händler rechneten anders, Maler malten anders, Rechen- und Geometriebücher wurden veröffentlicht, Ingenieure konstruierten nach mathematischen Prinzipien, – aber die Philosophen hatten von dieser Entwicklung nichts mitbekommen, verharrten in ihrem aristotelischen Dogmatismus. War das wirklich so? Sicher nicht. Sehen wir uns die historischen Fakten an:
Der französische Bischof Nikolaus von Oresme (1330-1382) versuchte bereits, in begrenzter Weise die Mathematik für die Naturphilosophie nutzbar zu machen, indem er z.B. qualitative Unterschiede wie „wärmer“ und „kälter“ in eine numerische Skala brachte. Außerdem hat er die Fallgesetze bereits 200 Jahre vor Galilei mathematisch korrekt beschrieben. Der italienische Mathematiker und Ingenieur Nicolo Tartaglia (1499-1557) benutzte die Mathematik, um die Flugbahnen von Kanonenkugeln zu untersuchen. Giovanni Battista Benedetti (1530-1590) beschäftigte sich bereits mit dem freien Fall und vermutete, dass alle Körper, egal wie schwer sie sind, im Vakuum gleich schnell fallen würden. Galileis Vater Vincenzo Galilei (1520-1591) beschäftigte sich mit der quantitativen Beschreibung schwingender Saiten. Juan Bautista Villalpando (1552-1608) war ein spanischer Mathematiker und Architekt. Er untersuchte mit geometrischen Methoden, wann Körper von beliebig komplizierter Gestalt stehen bleiben oder umkippen. Die so gewonnenen Erkenntnisse übertrug er auf Bauwerke. Der flämische Mathematiker, Physiker und Ingenieur Simon Stevin (1548-1620) wendete mathematische Methoden an bei Problemen der Statik, der Hydrostatik, der schiefen Ebene und dem freien Fall. Er vermutete bereits, dass die Gezeiten mit dem Mond zusammenhängen. Als Ingenieur beschäftigte er sich mit dem Bau von Häfen, von Kanälen und Schleusen, sowie mit Windmühlen. Isaak Beeckman (1588-1637) war an Mechanik und Optik interessiert und machte wichtige Beiträge zu diesen Gebieten. Er entwickelte zum Beispiel das sogenannte Beeckman-Dioptrum, ein Instrument zur Messung der Brechkraft von Linsen, und verbesserte die Theorien zur Lichtbrechung und zur Entstehung von Regenbogen.
Es kann also keine Rede davon sein, dass Galilei als erster oder gar als einziger auf weiter Flur den Gedanken hatte, die Methoden der Mathematik für die Naturerkenntnis nutzbar zu machen. Nicht nur die europäische Kultur hatte sich mathematisiert, auch die Mathematisierung der Naturphilosophie lag damals gewissermaßen in der Luft.
Hinterlasse einen Kommentar
An der Diskussion beteiligen?Hinterlasse uns deinen Kommentar!